
Copyright 2003, Jeremy Zawodny

MySQL, PHP, Stuff
PHPCon East 2003

Jeremy Zawodny
Yahoo!

April 24th, 2003
New York

http://jeremy.zawodny.com/mysql/

Copyright 2003, Jeremy Zawodny

About Me
• Engineer in Y! Search (prev. Y! Finance)
• MySQL user for over 5 years
• Active in MySQL community
• Write about LAMP for Linux Magazine
• MySQL advocacy & support at Yahoo!

Mail: Jeremy@Zawodny.com
http://jeremy.zawodny.com/mysql/

Copyright 2003, Jeremy Zawodny

Outline
• MySQL

– Versions
• Features
• Recommendations

– Performance Tips
• PHP

– Advice w/MySQL
– New Stuff

• Other Stuff
• Q&A

Copyright 2003, Jeremy Zawodny

MySQL at Yahoo!
• Roughly 200-400 servers world-wide
• FreeBSD and Linux
• Commodity hardware
• Replaces home-grown “database” systems
• Replaces Oracle in a few cases
• Typical install uses between 1-20GB
• Used both “live” and in batch processing
• Replication and load-balancing

Copyright 2003, Jeremy Zawodny

Starting Questions
• What version of MySQL are you using?
• What languages are being used?
• Which operating systems?
• Familiarity with other RDBMS servers?
• Role? DBA? Developer? SysAdmin?
• MySQL dedicated or shared servers?
• How fast is your growth?

– Transaction rates
– Data volume

Copyright 2003, Jeremy Zawodny

MySQL 3.23
• Stable
• Reliable
• Fast
• Standard on all Linux distributions today
• “Standard” and “Max” versions
• Max features InnoDB

– Transactions
– Row-level locking
– Foreign keys

Copyright 2003, Jeremy Zawodny

MySQL 3.23
• Introduced MyISAM to replace ISAM
• Full-text search support
• Handles very large data
• Built-in replication

– Scaling is easy for read-intensive apps

• Only critical bugs will be fixed in 3.23
• Recommendations

– Use 3.23 is you’re conservative
– Think about when you can upgrade

Copyright 2003, Jeremy Zawodny

MySQL 4.0
• “Production ready” as of 1 month ago
• InnoDB is standard
• Full-text search is much improved

– Indexing is faster
– Boolean searching

• (+”microsoft windows” –”rocks”)
– Stop word list customization

• Replication re-worked
– Dual threaded process
– De-couple relay and execution

Copyright 2003, Jeremy Zawodny

MySQL 4.0
• Query optimizer improvements
• Text mactching is faster
• Query cache
• SQL UNIONs
• On-the-fly tuning
• Bug fixes and minor improvements for 4.0
• Recommendations

– Use 4.0 for new applications
– Think about migrating to 4.0

Copyright 2003, Jeremy Zawodny

MySQL 4.1
• Sub-queries!
• Internationalization

– Per server/database/table/column character set
selection

• Spatial data types
– 2-D shapes (point, line, polygon, etc.)
– GIS/mapping applications
– PostgreSQL has had this for a while

• First alpha releast roughly 1 month ago
• Most new development going into 4.1

Copyright 2003, Jeremy Zawodny

MySQL 4.1
• New “binary” protocol

– Prepared statements
– Big performance boost

• Recommendations
– Look at MySQL 4.1 for applications you’ll

build later this year
– Consider the new mysqli PHP extension

Copyright 2003, Jeremy Zawodny

MySQL 5.0
• Stored procedures!

– Technically SQL-99 PSMs (persistent storage
modules)

• Being developed in paralell with 4.1
• More full-text improvements

– Per-table or per-index stop words, lengths
• Recommendations

– It will be at least a year before you’d think
about building production applications on 5.0

– But it’s still fun to play with and to track
development

Copyright 2003, Jeremy Zawodny

MySQL Performance Tips
• Query optimization

– Enable the slow query log
– Learn to use and read EXPLAIN output
– Understand how indexes help

• The “leftmost prefix” rule

– Don’t ask for unnecessary data
• SELECT * syndrome

– Use the query cache (4.0+)
– Try re-phrasing queries

Copyright 2003, Jeremy Zawodny

MySQL Performance Tips
• Application Design

– Use the right column types
– Use the right table types

• Concurrency/Locking
• Features: full-text, foreign keys, etc.

– Cache infrequently changed data
• Or use HEAP (in-memory) tables

– Don’t over-use sessions
– Plan for growth, possibly using replication
– Use transactions where they make sense

Copyright 2003, Jeremy Zawodny

MySQL Performance Tips
• Server Tuning

– Read and understand SHOW STATUS output
• Bytes in/out per second
• Queries per second
• Active vs. idle vs. max connections

– Understand critical resources
• Memory
• CPU
• Disk I/O

• Customize your configuration file
– Defaults are very conservative!

Copyright 2003, Jeremy Zawodny

MySQL Performance Tips
• Memory use is very important

– Global caches/buffers
• key_buffer
• innodb_buffer_pool
• table_cache
• thread_cache

– Per-thread caches/buffers
• sort_buffer
• record_buffer
• join_buffer

• Leave some memory for the OS

Copyright 2003, Jeremy Zawodny

PHP and MySQL
• Benchmarking

– PHP: ab (apache bench)
– MySQL: mysql-super-smack
– Many problems appear only under load!

Copyright 2003, Jeremy Zawodny

PHP and MySQL
• Persistent connections

– MySQL connection overhead is pretty small
• Server-side resources are minimal
• The protocol is light

– To help even more
• Disable DNS lookups
• Set a reasonable thread_cache value

Copyright 2003, Jeremy Zawodny

PHP and MySQL
• Sessions

– Be careful with MySQL-based session data
– It’s easy to over-use
– Cookie-based sessions are often sufficient
– Can be problematic w/replication and load-

balancing setups

Copyright 2003, Jeremy Zawodny

PHP’s mysqli extension
• Using PHP4+ and MySQL 4.1+
• Written by Georg Richter <georg@php.net>

– 70+ functions
• Improve performance of

– repetitive non-SELECT queries
– non-cacheable SELECT queries

• Send the server a query to parse & cache
• You get back a statement handle
• Execute the statement many times
• May not benefit all web apps
• Can be a big help to batch processing
• Application servers and middleware

Copyright 2003, Jeremy Zawodny

PHP’s mysqli extension
• Classified as “experimental” right now
• Requires the MySQL 4.1 client library

– Will be bunded in the future

• Can make replication-aware apps easier

Copyright 2003, Jeremy Zawodny

The mysqli API
<?php
// normal query
$link = mysqli_connect("localhost", $user, $passwd);
$rc = mysqli_query($link, $sql);

// prepare select, bind, execute, fetch, close
$stmt = mysqli_prepare($link, "SELECT col1, col2 from my_table");
mysqli_bind_result($stmt, &$c1, &$c2);
mysqli_execute($stmt);
mysqli_fetch($stmt);
$test = array($c1,$c2);
mysqli_stmt_close($stmt);
mysqli_close($link);
?>

Copyright 2003, Jeremy Zawodny

The mysqli API
<?php
// connect, prepare insert, bind, execute, close

$link = mysqli_connect("localhost", $user, $passwd);
$stmt = mysqli_prepare($link, "INSERT INTO my_table VALUES (?,?)");
mysqli_bind_param($stmt, &$d1, MYSQLI_BIND_STRING,

&$d2, MYSQLI_BIND_STRING);
$d1 = ‘MySQL';
$d2 = ‘PHP';

// the execute could be in a loop to insert many values
mysqli_execute($stmt);
mysqli_stmt_close($stmt);

// for replication setups
mysqli_slave_query($link, $sql);
mysqli_master_query($link, $sql)
?>

Copyright 2003, Jeremy Zawodny

Stupid Query Tricks
• Use SQL_CALC_ROWS and

FOUND_ROWS() rather than double-
queries:
–SELECT … LIMIT N, M
–SELECT COUNT(*)

• Instead:
–SELECT … LIMIT N, M
–SELECT FOUND_ROWS()

• Requires far less overhead on MySQL

Copyright 2003, Jeremy Zawodny

Stupid Query Tricks
• Use a UNION to re-write a slow OR query

SELECT * FROM mytable
WHERE col1 = ‘foo’ OR col2 = ‘bar’

(SELECT * FROM mytable
WHERE col1 = ‘foo’)
UNION
(SELECT * FROM mytable
WHERE col2 = ‘bar’)

Copyright 2003, Jeremy Zawodny

Final Advice
• Read
• Learn
• Test
• Ask
• Monitor
• Benchmark

Copyright 2003, Jeremy Zawodny

For More Info…
• MySQL mailing lists

– Visit lists.mysql.com

• Books
– MySQL Manual
– MySQL (Paul’s Book)
– Managing & Using MySQL

• Web searching

Copyright 2003, Jeremy Zawodny

Questions and Answers

