
Copyright 2003, Jeremy Zawodny

MySQL Optimization
MySQL User Conference

Jeremy Zawodny
Yahoo!

April 12th, 2003
San Jose, California

http://jeremy.zawodny.com/mysql/

Copyright 2003, Jeremy Zawodny

About Me
• Engineer in Y! Search (prev. Y! Finance)
• MySQL user for over 5 years
• Active in MySQL community
• Write about LAMP for Linux Magazine
• MySQL advocacy & support at Yahoo!

Home: Jeremy@Zawodny.com
Work: jzawodn@yahoo-inc.com
http://jeremy.zawodny.com/mysql/

Copyright 2003, Jeremy Zawodny

Outline
• Introduction
• Why Optimize?
• Goals
• Database Design
• Application Design
• Writing Fast Queries
• MySQL Server Tuning
• Operating System Tuning
• Hardware Tuning
• Network & Replication
• Where to Learn More
• Questions and Answers

Copyright 2003, Jeremy Zawodny

Starting Questions
• What version of MySQL are you using?
• What languages are being used?
• Which operating systems?
• Familiarity with other RDBMS servers?
• Role? DBA? Developer? SysAdmin?
• MySQL dedicated or shared servers?
• How fast is your growth?

– Transaction rates
– Data volume

Copyright 2003, Jeremy Zawodny

What you Need to Know
• You should ask questions at any time

– There should be sufficient time

• MySQL usage
– Basic queries (SELECT, UPDATE, INSERT)
– Installation or where files are located

• Basic programming concepts
– Any language will do

• Operating system basics
– Memory usage, swapping, etc.

Copyright 2003, Jeremy Zawodny

MySQL at Yahoo!
• Roughly 200-400 servers world-wide
• FreeBSD and Linux
• Commodity hardware
• Replaces home-grown “database” systems
• Replaces Oracle in a few cases
• Typical install uses between 1-20GB
• Used both “live” and in batch processing
• Replication and load-balancing

Copyright 2003, Jeremy Zawodny

Why Optimize?
• You can do more with less

– MySQL on “normal” hardware scales well
– A little time can save thousands in hardware
– The classic story goes…

• As you data grows, you’ll need to
– Performance will degrade over time
– You’re probably not monitoring it anyway

• It is easier than re-coding you apps
• Your users will notice if you don’t!

Copyright 2003, Jeremy Zawodny

MySQL’s Defaults
• Tuned for small and medium data sets
• Uses very little memory even if available
• Suitable for use in a shared environment
• Assumes little about your hardware
• Begins to slow as growth continues
• Uses non-transactional tables (MyISAM)

– That’s what most people need (90%)
– Very low overhead

Copyright 2003, Jeremy Zawodny

Scaling MySQL
• Like Linux, MySQL scales up and down
• Can run many MySQL instances at once
• Can run one very big MySQL instance
• Can run with only a few MB of memory

– Suitable for small devices
– Will be disk-bound

• Can embed using libmysqld (MySQL 4.x)
• Can recompile to add/remove features

– Table types, query cache, etc.

Copyright 2003, Jeremy Zawodny

Using Less Hardware
• Hardware is rarely the bottleneck

– Well-tuned servers are often disk-bound

• MySQL isn’t using it aggressively
– You must configure it

• Modern CPUs are very fast
– What you have is probably sufficient

• Memory is plentiful
– You’re probably not using what you have

• Upgrades do little to solve most problems!

Copyright 2003, Jeremy Zawodny

Goals
• Learn to write fast queries and applications
• Learn to design and use the right tables
• Know where to look for bottlenecks
• Predict behavior as load increases
• Understand what to monitor over time
• Understand how MySQL uses system resources
• Learn what settings you can adjust

– In your operating system
– In MySQL
– In your applications

• Know where to learn more…

Copyright 2003, Jeremy Zawodny

Database Design
• Normalize your data by default

– Sometime you need to de-normalize
– When in doubt, benchmark

• MySQL super-smack
• MySQL benchmark suite
• Home-grown tools
• Use your real apps!

Copyright 2003, Jeremy Zawodny

Database Design
• Select the right column types

– No bigger than you need
– MySQL provides a ton of column types
– Use NOT NULL where it makes sense
– Use fixed column sizes if you can

• MyISAM tables with fixed rows are faster
• Concurrency improvements

– Store compressed data when possible

See: http://www.mysql.com/doc/S/t/Storage_requirements.html

Copyright 2003, Jeremy Zawodny

Database Design
• Select the right table types

– What locking model do you need?
• Table (MyISAM)
• Row (InnoDB)
• Page (BDB)

– Consider ratio of reads to writes
– Foreign key constraints?
– Do you need transactions?
– Can you afford to lose records in a crash?
– Do you know MySQL’s table types?

Copyright 2003, Jeremy Zawodny

Database Design
• MyISAM Tables

– Very efficient
– Compact storage
– In-memory key cache for index data
– Table locking
– No transactions
– Good for

• High volume logging (write)
• High volume reads
• Not both

– Variations: Compressed, RAID, Merge

Copyright 2003, Jeremy Zawodny

Database Design
• Compressed MyISAM Tables

– Read-only
– Good for CD-ROMs and archives

• MyISAM RAID Tables
– Break the 2GB/4GB/whatever barrier

• MyISAM Merge Tables
– Many physically identical MyISAM tables
– Can treat as a single table (or not)

Copyright 2003, Jeremy Zawodny

Database Design
• HEAP Tables

– Stored in memory
• They will vanish at server shutdown

– Very fast hash-based lookups
• Limited index use
• Range queries are slower

– B-Tree available in 4.1
– Table locking
– Great for static lookups
– Size can be limited to prevent disaster

Copyright 2003, Jeremy Zawodny

Database Design
• BDB Tables

– Transactional
– Automatic recovery
– Tables grow as needed
– Page-level locking (8KB page)

• Single READ-COMMITTED isolation level

– Uses Berkeley DB under the hood
– Few users actually use BDB
– Works well for small - medium transaction rate
– Locking on the last page can be a problem

Copyright 2003, Jeremy Zawodny

Database Design
• InnoDB Tables

– Modeled after Oracle
• Row-level locking
• Non-locking SELECTs
• Uses pre-allocated tablespace files

– Multiple isolation levels
• Easily changed with a SET command

– Referential integrity - foreign keys
– High performance
– Very high concurrency
– Automatic recovery after crash

Copyright 2003, Jeremy Zawodny

Database Design
• Use Indexes wisely

– Don’t use several indexes when one will do
– Understand the “leftmost prefix” rule

• Index on (col1, col2, col3) vs. 3 indexes

– Don’t index columns until you need to
– Verify that indexes are used (difficult)
– Use partial indexes on large (text) fields
– Index a hash rather than a large value (URL)

• MD5 is an excellent choice
• It’s even built-in

Copyright 2003, Jeremy Zawodny

Database Design
• Use full-text indexing if you need it

– MyISAM tables only
– Very fast
– Excellent in MySQL 4.x
– Results are ranked (like a search engine might)
– Boolean queries

• Flexible
• Mostly feature-complete

– Works on any textual data
• Other character sets will need 4.1 or 5.0

Copyright 2003, Jeremy Zawodny

Full-Text Search
• Use 4.0 if possible

– Indexing is much faster
– Stop word list customization
– Min word size easily changed

• Remember to rebuild indexes after changing

• In 5.0 we should see
– Per-table stop word lists
– Per-table word length options
– Per-table word characters lists
– These might be per-index!

Copyright 2003, Jeremy Zawodny

Application Design
• Don’t store data you don’t need

– Compress it
– Get rid of it

• Don’t store computable data
– MySQL can do it
– Your app can do it

• Don’t ask for data you don’t need…
– Do you really need all fields?
SELECT * FROM…

Copyright 2003, Jeremy Zawodny

Application Design
• Use MySQL extensions for speed

– REPLACE queries
– Bundled INSERT queries
– Multi-table deletes
– User variables

• Use logging to track bottlenecks
• Don’t perform unnecessary queries

– Cache data (static lookup tables)
– Use the Query Cache if you must

• Benchmark your application
– Know where the bottlenecks are
– Know how a slow db affects your application

Copyright 2003, Jeremy Zawodny

Application Design
• Use transactions

– Prevents data loss
– Server does less random I/O
– Performance and reliability

• Keep the clients “near” the server
– Network latency is a killer
– Replication can solve geography problems
– Can also help solve geology problems (quake)
– Running app and MySQL on same hardware

Copyright 2003, Jeremy Zawodny

Application Design
• Think about growth

– There are size limits that you might hit
– InnoDB and MyISAM both have them (sort of)

• Keep primary keys short for InnoDB

Copyright 2003, Jeremy Zawodny

Application Design
• Use prepared queries and placeholders

– MySQL doesn’t yet support them
– Your API may
– When MySQL does, you benefit!
– The API may be more efficient anyway
– MySQL 4.1 and PHP 5.0 benefit

SELECT name, address, state, zip

FROM customers

WHERE id = ?

Copyright 2003, Jeremy Zawodny

Application Design
• Web apps

– Use (but don’t over-use) connection pooling
– Use middleware to abstract the database

• May also provide caching and pooling

– Don’t keep everything in the database!
• Images can live on the file system
• But you might want to replicate them

– Pick the fastest driver you can
• Java has several, Perl has two
• On Windows, use the “most native”

Copyright 2003, Jeremy Zawodny

Break!

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
• Use Indexes
• Use EXPLAIN SELECT
• Simplify where clause
• Watch Slow query log
• Bundle INSERTs
• UNIONs

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
• Understanding how MySQL runs queries
• You need to think like MySQL does
• Some of its goals are…

– Eliminate as many rows as possible
– Use indexes where possible
– Avoid table scans
– Consider many join orders
– Avoid hitting the disk
– Avoid using the data records if the index has it

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
• EXPLAIN SELECT

– Tells you what MySQL is thinking
– Which keys (indexes) can it use
– Which keys will it use
– How many rows must it examine (roughly)

•ANALYZE TABLE can help

– How hard must MySQL work?

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
• EXPLAIN SELECT

mysql> EXPLAIN SELECT * FROM Headlines H, S2H S WHERE S.Symbol = 'YHOO' and H.Id = S.HeadlineId;

+-------+--------+-------------------+---------+---------+--------------+------+-------------------------+

| table | type | possible_keys | key | key_len | ref | rows | Extra |

+-------+--------+-------------------+---------+---------+--------------+------+-------------------------+

| S | ref | HeadlineId,Symbol | Symbol | 75 | const | 383 | where used; Using index |

| H | eq_ref | PRIMARY | PRIMARY | 4 | S.HeadlineId | 1 | where used |

+-------+--------+-------------------+---------+---------+--------------+------+-------------------------+

2 rows in set (0.00 sec)

mysql> EXPLAIN SELECT * FROM Headlines H, S2H S WHERE S.Symbol = 'YHOO' and H.Id = S.HeadlineId ORDER BY Time DESC;

+-------+--------+-------------------+---------+---------+--------------+------+---+

| table | type | possible_keys | key | key_len | ref | rows | Extra |

+-------+--------+-------------------+---------+---------+--------------+------+---+

| S | ref | HeadlineId,Symbol | Symbol | 75 | const | 383 | where used; Using index; Using temporary;
Using filesort

| H | eq_ref | PRIMARY | PRIMARY | 4 | S.HeadlineId | 1 | where used |

+-------+--------+-------------------+---------+---------+--------------+------+---+

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
• EXPLAIN SELECT

– Table
• Order is significant
• Aliases appear

– Type
• System

– Table has one row
– Easily optimized

• Const
– Only a single row matches
– Read once

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
• EXPLAIN SELECT (continued)

– Type (continued)
• eq_ref

– One row matches per combination
– Unique index match

• ref
– Several matching rows per combination
– Non-unique index

• range
– A range of rows will be retrieved

• index
– Index will be scanned for matches
– Like a table scan, but faster

• all
– Full table scan
– Worst case

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
• EXPLAIN SELECT (continued)

– Possible keys
• What MySQL had to choose from

– Key
• What it decided to use

– Key length
• Length (in bytes) of the longest key

– Ref
• Which column it will match with

– Rows
• Approximately how many rows must be examined

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
• EXPLAIN SELECT (continued)

– Extra information
• Using filesort

– An extra pass is required to sort the records
– This can be slow at times

• Using index
– Data will come from the index rather than rows
– This can speed things up

• Using temporary
– MySQL will create a temporary table
– It’ll be a disk-based table if it’s too large

• Where used
– The where clause will be applied to this table

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
• Optimizer tips and tricks

– It’s smart, but not perfect
– Only one index per table per query

• You may need to de-normalize to get performance
• You may need to write two queries instead of one

– Don’t compute in the WHERE
• MySQL doesn’t know how to optimize constant

expressions

SELECT * FROM Headlines

WHERE Time > SUBDATE(NOW(), INTERVAL 7 DAY);

Copyright 2003, Jeremy Zawodny

Insert Speed
• In 4.1 and beyond, use prepared statements
• In older versions

– Single inserts are the slowest
– Multi-rows inserts are faster
– Bulk-loading (LOAD DATA or mysqlimport)

are very, very, very fast

• Using InnoDB, use transactions wisely
– Many inserts in AUTOCOMMIT mode are

very, very slow

Copyright 2003, Jeremy Zawodny

Query Cache
• Part of MySQL 4.0
• Can seriously boost performance
• Might save legacy apps you can’t change
• Use query cache selectively if you have lots

of writes
–SELECT SQL_CACHE …

• Use mytop to watch query cache stats
– Version 1.3 and 1.4 will have more stats

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning
• Watching performance
• Benchmarking
• Tunable Parameters

– Most bang, least effort
– Incremental gains

• Methodology
– Iterative testing
– Long-term monitoring

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning
Watching Performance

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning
• Key Performance Numbers

– Queries per second
• Min, Max, Short-term, Long-Term

– Bytes per second
• Inbound vs. Outbound

– New connections per second
– Idle vs. Active clients
– Key cache efficiency
– Query cache efficiency

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning
• How MySQL uses memory

– Main Global Caches and Buffers
• Query cache
• Key buffer
• Table cache
• InnoDB buffer pool
• InnoDB log buffer

– Main Thread-specific Caches and Buffers
• Record buffer
• Sort buffer
• Join buffer

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning
• SHOW STAUTS

– Created_tmp_disk_tables
• If large, increase temp table size

– Handler_*
• Determine key buffer effectiveness

– Com_*
• Find the commands that are most often run

– Questions and Uptime
• Compute queries/second

– Select_*
• How many types of each SELECT are executed

– Qcache_*
• Query cache performance

Copyright 2003, Jeremy Zawodny

On-the-Fly Tuning
• Use MySQL’s SET syntax to change

parameters on the fly (new in 4.0)
– max_connections
– wait_timeout
– thread_cache
– key_buffer_size
– table_cache

• Don’t change too much at once
• Persistent connections aren’t always fast!
• Changes may take time to notice

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning
• SHOW STATUS

– Table_locks_*
• How many times are queries waiting for locks?
• Concurrency problems show up here

– Bytes_*
• How much data are you pumping out
• Compare with inbound traffic

– Qcache_*
• Query cache performance
• Memory usage

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning
• my.cnf file parameters

– key_buffer
– tmp_table_size
– Table_cache
– Max_connections
– Max_user_connections
– Long_query_time
– Thread_concurrency

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning
• my.cnf file parameters

– innodb_buffer_pool_size
– innodb_log_file_size
– innodb_file_io_threads
– innodb_flush_log_at_trx_commit
– innodb_log_buffer_size
– innodb_flush_method

• fdatasync
• O_DSYNC

Copyright 2003, Jeremy Zawodny

InnoDB Performance
• Transaction log flushing has three options

– (1) Flush on commit
– (0) Never flush
– (2) Flush once per second

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning
• Fileysystem Issues

– Spread data among disks
• Put heavily used and lightly used databases together
• RAID-5 or RAID-10 for data (w/batter-backed cache)
• RAID-1 for logs
• New CREATE TABLE makes this easier

– Logs separate from data
• Logs are mostly serialized writes
• Tables are updated and used in mostly random fashion

– If you have a lot of tables in a database
• Use a filesystem designed to handle it
• ResiserFS is a good choice

– A journaling filesystem
• Makes crash recovery faster
• Better utilizes disk I/O (usually)

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning
• Upgrade once in a while

– New versions are often faster
– Better optimizations in query parser
– New and enhanced caching

• Convert older tables to newer format
– ISAM to MyISAM
– BDB to InnoDB (or not)
– ALTER TABLE my_table TYPE=InnoDB

• Don’t flush the transaction logs on commit

Copyright 2003, Jeremy Zawodny

Upgrade Testing
• It’s often a good idea to keep up-to-date
• Performance tweaks and optimizations are

introduced during the maintenance process
• Be sure to test your critical queries carefully
• Always use a real load test or read the

EXPLAIN output
• Without load, “slow” queries are often fast

Copyright 2003, Jeremy Zawodny

Operating System Tuning
• Virtual Memory Use

– FreeBSD - excellent
– Linux - varies wildly

• 2.4.9 good
• >= 2.4.16 good
• Others not good

• Per-process limits on:
– Memory
– File descriptors

• Network duplex settings
• Competing processes on the machine?

Copyright 2003, Jeremy Zawodny

Operating System Tuning
• Key Metrics

– Memory used/free/cache/buffer
• Swapping is very bad
• You might even disable swap

– Paging and page faults
• Make sure there’s no memory pressure
• Server variables might be wrong if many page faults

– Disk I/O
• Make sure the I/O is where you expect
• Disk I/O tuning (see your OS docs)

– Processes running, sleeping, blocked/waiting
– Actual CPU usage (might be too low)

Copyright 2003, Jeremy Zawodny

Operating System Tuning
• Useful Unix Tools

– top, ps, vmstat
– iostat, sar
– mrtg, rrdtool

• Windows Tools
– Performance Monitor (perfmeter)
– Task Manager
– Others I don’t know (not a Windows guy)

Copyright 2003, Jeremy Zawodny

Hardware Tuning
• CPU Issues

– Speed
– Single vs. Dual

• RAM Issues
• Disks

– IDE vs. SCSI
– RAID (hardware or software)
– Battery-backed cache on controller is best

Copyright 2003, Jeremy Zawodny

Hardware Tuning
• Network

– The faster the better (watch latency)
– Duplex settings

• I/O Channels
– The more the merrier
– Most PC motherboards suck
– Server-class boards are better
– High-end hardware (IBM, Sun) are best
– You’ll be lucky to have this problem!

Copyright 2003, Jeremy Zawodny

Network & Replication
• Put clients near servers
• Redundancy is very good
• Put slaves near master(s)

– Unless that’s stupid

• Use load-balancing technology
– High(er) availability MySQL
– Easy scaling of traffic

• Pick the correct replication topology
• Backup slaves instead of the master

Copyright 2003, Jeremy Zawodny

Network & Replication
• Replication is quite flexible
• Can build a topology to solve most

problems
• Only a few nagging issues

– Auto-increment fields
– Automatic Fail-over
– Need to build health checks

• Performance/Latency
• Slave stopped?

• Come to my replication talk to learn more!

Copyright 2003, Jeremy Zawodny

Stupid Query Tricks
• Use SQL_CALC_ROWS and

FOUND_ROWS() rather than double-
queries:
–SELECT … LIMIT N, M
–SELECT COUNT(*)

• Instead:
–SELECT … LIMIT N, M
–SELECT FOUND_ROWS()

• Requires far less overhead on MySQL

Copyright 2003, Jeremy Zawodny

Stupid Query Tricks
• Use a UNION to re-write a slow OR query

SELECT * FROM mytable
WHERE col1 = ‘foo’ OR col2 = ‘bar’

(SELECT * FROM mytable
WHERE col1 = ‘foo’)
UNION
(SELECT * FROM mytable
WHERE col2 = ‘bar’)

Copyright 2003, Jeremy Zawodny

Stupid Query Tricks
• Ordering, limiting, and ordering again

(SELECT * FROM mytable

WHERE col1 = ‘foo’
ORDER BY col2 LIMIT 50)
ORDER BY col3

Copyright 2003, Jeremy Zawodny

Final Advice
• Read
• Learn
• Test
• Ask
• Monitor
• Benchmark

Copyright 2003, Jeremy Zawodny

For More Info…
• MySQL mailing lists

– Visit lists.mysql.com

• Books
– MySQL Manual
– MySQL (Paul’s Book)
– Managing & Using MySQL

• Web searching

Copyright 2003, Jeremy Zawodny

Questions and Answers

