MySQL Optimization
MySQL User Conference

Jeremy Zawodny

Y ahoo! “
YaHoO!

My
April 12, 2003
San Jose, California

http://jeremy.zawodny.com/mysql/

Copyright 2003, Jeremy Zawodny

About Me
e Engineer inY! Search (prev. Y! Finance)

e MySQL user for over 5 years

e Activein MySQL community

o Write about LAMP for Linux Magazine
« MySQL advocacy & support at Y ahoo!

Home: Jeremy@Zawodny.com
Work: jzawodn@yahoo-inc.com
http://jeremy.zawodny.com/mysql/

Copyright 2003, Jeremy Zawodny

Outline
Introduction
Why Optimize?
Goals
Database Design
Application Design
Writing Fast Queries
MySQL Server Tuning
Operating System Tuning
Hardware Tuning
Network & Replication
Whereto Learn More
Questions and Answers

Copyright 2003, Jeremy Zawodny

Starting Questions
What version of MySQL are you using?

What languages are being used?

Which operating systems?

Familiarity with other RDBM S servers?
Role? DBA? Developer? SysAdmin?
MySQL dedicated or shared servers?

How fast Is your growth?
— Transaction rates
— Datavolume

Copyright 2003, Jeremy Zawodny

What you Need to Know

Y ou should ask gquestions at any time
— There should be sufficient time

MySQL usage
— Basic queries (SELECT, UPDATE, INSERT)
— Installation or where files are located

Basic programming concepts
— Any language will do
Operating system basics

— Memory usage, swapping, etc.

Copyright 2003, Jeremy Zawodny

MySQL at Yahoo!
Roughly 200-400 servers world-wide

FreeBSD and Linux

Commodity hardware

Replaces home-grown “database” systems
Replaces Oracle in afew cases

Typical install uses between 1-20GB
Used both “live’ and in batch processing
Replication and load-balancing

Copyright 2003, Jeremy Zawodny

Why Optimize?
Y ou can do more with less
— MySQL on “normal” hardware scales well

— A little time can save thousands in hardware
— The classic story goes...

Asyou data grows, you'll need to
— Performance will degrade over time
— Y ou’re probably not monitoring it anyway

It IS easier than re-coding you apps
Y our users will notice If you don’t!

Copyright 2003, Jeremy Zawodny

MySQL’s Defaults
Tuned for small and medium data sets
Uses very little memory even if avallable
Suitable for use In a shared environment
Assumes little about your hardware
Beginsto slow as growth continues

Uses non-transactional tables (MylSAM)
— That’ swhat most people need (90%)
— Vey low overhead

Copyright 2003, Jeremy Zawodny

Scaling MySQL
Like Linux, MySQL scales up and down
Can run many MySQL Instances at once
Can run one very big MySQL Instance

Can run with only afew MB of memory
— Suitable for small devices
— Will be disk-bound

Can embed using libmysgld (MySQL 4.x)

Can recompile to add/remove features
— Table types, query cache, etc.

Copyright 2003, Jeremy Zawodny

Using Less Hardware
Hardware is rarely the bottleneck
— Well-tuned servers are often disk-bound
MySQL Isn't using It aggressively
— Y ou must configure it
Modern CPUs are very fast
— What you have is probably sufficient

Memory is plentiful
— You're probably not using what you have

Upgrades do little to solve most problems!

Copyright 2003, Jeremy Zawodny

Goals

_earn to write fast queries and applications
_earn to design and use the right tables

Know where to look for bottlenecks

Predict behavior as load increases

Understand what to monitor over time
Understand how MySQL uses system resources

L earn what settings you can adjust
— In your operating system

— In MySQL

— In your applications

Know where to learn more...

Copyright 2003, Jeremy Zawodny

Database Design

 Normalize your data by default
— Sometime you heed to de-normalize
— When in doubt, benchmark
e MySQL super-smack
 MySQL benchmark suite

e Home-grown tools
e Use your real apps!

Copyright 2003, Jeremy Zawodny

Database Design

o Select the right column types
— No bigger than you need
— MySQL provides aton of column types
— Use NOT NULL where it makes sense

— Use fixed column sizes if you can
 MylSAM tables with fixed rows are faster
« Concurrency improvements

— Store compressed data when possible

See: http://www.mysgl.com/doc/S/t/Storage _requirements.html

Copyright 2003, Jeremy Zawodny

Database Design

o Select the right table types

— What locking model do you need?
e Table (MyISAM)
* Row (InnoDB)
* Page (BDB)
— Consider ratio of reads to writes
— Foreign key constraints?
— Do you need transactions?
— Can you afford to lose records in a crash?

— Do you know MySQL’s table types?

Copyright 2003, Jeremy Zawodny

Database Design

e MylISAM Tables
— Very efficient
— Compact storage
— In-memory key cache for index data
— Table locking
— No transactions

— Good for

« High volume logging (write)
e High volume reads
e Not both

— Variations. Compressed, RAID, Merge

Copyright 2003, Jeremy Zawodny

Database Design
e Compressed MylSAM Tables
— Read-only
— Good for CD-ROMs and archives

« MyISAM RAID Tables
— Break the 2GB/4GB/whatever barrier

e MylSAM Merge Tables
— Many physically identical MylSAM tables
— Can treat as a single table (or not)

Copyright 2003, Jeremy Zawodny

Database Design

« HEAP Tables

— Stored in memory
e They will vanish at server shutdown

— Very fast hash-based |ookups

e Limited index use
« Range queries are dower

— B-Tree availlablein 4.1

— Table locking

— Great for static lookups

— Size can be limited to prevent disaster

Copyright 2003, Jeremy Zawodny

Database Design

 BDB Tables

— Transactional
— Automatic recovery
— Tables grow as needed

— Page-level locking (8KB page)
e Single READ-COMMITTED isolation level

— Uses Berkeley DB under the hood

— Few users actually use BDB

— Works well for small - medium transaction rate
— Locking on the last page can be a problem

Copyright 2003, Jeremy Zawodny

Database Design

 |nnoDB Tables

— Modeled after Oracle

* Row-level locking
e Non-locking SELECTSs
o Uses pre-allocated tablespace files

— Multiple isolation levels
» Easily changed witha SET command

— Referential integrity - foreign keys
— High performance

— Very high concurrency

— Automatic recovery after crash

Copyright 2003, Jeremy Zawodny

Database Design

e UseIndexeswisaly
— Don’t use severa indexes when one will do

— Understand the “leftmost prefix” rule
 Index on (coll, col2, col3) vs. 3 indexes

— Don’t index columns until you need to
— Verfy that indexes are used (difficult)
— Use partial indexes on large (text) fields

— Index a hash rather than alarge value (URL)
« MD5 isan excellent choice
 [t'seven built-in

Copyright 2003, Jeremy Zawodny

Database Design

o Use full-text indexing If you need it
— MylISAM tables only
— Very fast
— Excellent in MySQL 4.x
— Results are ranked (like a search engine might)

— Boolean queries
* FHexible
* Mostly feature-complete

— Works on any textual data
o Other character setswill need 4.1 or 5.0

Copyright 2003, Jeremy Zawodny

Full-Text Search

e Use4.01f possible
— Indexing is much faster
— Stop word list customization
— Min word size easily changed
« Remember to rebuild indexes after changing
e In 5.0 we should see

— Per-tab
— Per-tab
— Per-tab

e stop word lists
e word length options
e word characterslists

— These might be per-index!

Copyright 2003, Jeremy Zawodny

Application Design
e Don't store data you don’'t need
— Compress it
— Get rid of it
e Don't store computable data

— MySQL cando it
—Your app can do it

 Don't ask for datayou don’t need...

— Do you really need all fields?
SELECT * FROM..

Copyright 2003, Jeremy Zawodny

Application Design

Use MySQL extensions for speed
— REPLACE queries

— Bundled INSERT queries
— Multi-table deletes
— User variables

Use logging to track bottlenecks

Don’t perform unnecessary queries
— Cache data (static lookup tables)
— Use the Query Cache if you must

Benchmark your application
— Know where the bottlenecks are
— Know how a dlow db affects your application

Copyright 2003, Jeremy Zawodny

Application Design

e Usetransactions
— Prevents data |l oss
— Server does less random 1/0
— Performance and reliability
» Keep theclients“near” the server
— Network latency isakiller
— Replication can solve geography problems
— Can also help solve geology problems (quake)
— Running app and MySQL on same hardware

Copyright 2003, Jeremy Zawodny

Application Design

e Think about growth
— There are size limits that you might hit
— InnoDB and MylSAM both have them (sort of)

o Keep primary keys short for InnoDB

Copyright 2003, Jeremy Zawodny

Application Design

o Use prepared queries and placeholders
— MySQL doesn’'t yet support them
— Your APl may
— When MySQL does, you benefit!
— The APl may be more efficient anyway
— MySQL 4.1 and PHP 5.0 benefit

SELECT name, address, state, zip
FROM customers
WHERE id = ?

Copyright 2003, Jeremy Zawodny

Application Design
o \Web apps
— Use (but don’t over-use) connection pooling
— Use middleware to abstract the database
* May also provide caching and pooling
— Don’t keep everything in the database!

* Images can live on the file system
« But you might want to replicate them

— Pick the fastest driver you can
e Java has severadl, Perl hastwo
 On Windows, use the “most native’

Copyright 2003, Jeremy Zawodny

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
Use Indexes
Use EXPLAIN SELECT
Simplify where clause
Watch Slow query log
Bundle INSERTSs
UNIONS

db2.finance.sc5.yahoo.com (2002-06-04)

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
o Understanding how MySQL runs queries
* You need to think like MySQL does

e Some of Itsgoalsare...
— Eliminate as many rows as possible
— Use indexes where possible
— Avoid table scans
— Consider many join orders
— Avoid hitting the disk
— Avoid using the datarecords if the index has it

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
e EXPLAIN SELECT
— Tellsyou what MySQL isthinking
— Which keys (indexes) can it use
— Which keyswill it use

— How many rows must it examine (roughly)
= ANALYZE TABLE can help

— How hard must MySQL work?

=

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
 EXPLAIN SELECT

mysqgl> EXPLAIN SELECT * FROM Headlines H, S2H S WHERE S.Symbol = "YHOO" and H.ld = S.Headlineld;

o ——_— o ——_—— e o —— o e o e~ +
| table | type | possible_keys | key | key_len | ref | rows | Extra |
Fom Fome—_—— o Fom e Fom e e Ry +
| S | ref | Headlineld,Symbol | Symbol | 75 | const | 383 | where used; Using index |
| H | eq_ref | PRIMARY | PRIMARY | 4 | S.Headlineld | 1 | where used |
Fom Fome—_—— o Fom e Fom e e Ry +

2 rows in set (0.00 sec)

mysql> EXPLAIN SELECT * FROM Headlines H, S2H S WHERE S.Symbol = "YHOO" and H.ld = S.Headlineld ORDER BY Time DESC;

. Fommm e e T — - . S - S +

| table | type | possible_keys | key | key_len | ref | rows | Extra |

Fom——— Fom e —_—— e Fom e ——— Fom e —— oy o —— S +

| S | ref | Headlineld,Symbol | Symbol | 75 | const | 383 | where used; Using index; Using temporary;
Using filesort

| H | eq_ref | PRIMARY | PRIMARY | 4 | S.Headlineld | 1 | where used |

[Y —— [L —— S [Y —— [T —— TS ——— B —— S S G S S +

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
+ EXPLAIN SELECT

— Table
e Order is significant
 Aliases appear
— Type
e System
— Table has one row
— Easily optimized
e Const

— Only asingle row matches
— Read once

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
« EXPLAIN SELECT (continued)
— Type (continued)
o eg ref
— One row matches per combination
— Unique index match
ref
— Severa matching rows per combination
— Non-unique index
range
— A range of rows will be retrieved
Index
— Index will be scanned for matches
— Like atable scan, but faster
o al
— Full table scan
— Worst case

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
+ EXPLAIN SELECT (continued)

— Possible keys

 What MySQL had to choose from
— Key

 What it decided to use
— Key length

 Length (in bytes) of the longest key
— Ref

e Which column it will match with

— Rows
o Approximately how many rows must be examined

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
+ EXPLAIN SELECT (continued)

— Extrainformation

« Using filesort
— An extrapassisrequired to sort the records
— This can be dlow at times

« Using index
— Datawill come from the index rather than rows
— This can speed things up

» Using temporary
— MySQL will create atemporary table
— It'll be adisk-based table if it'stoo large

e Where used
— The where clause will be applied to this table

Copyright 2003, Jeremy Zawodny

Writing Fast Queries
e Optimizer tips and tricks
— It’s smart, but not perfect

— Only one index per table per query
* You may need to de-normalize to get performance
* You may need to write two queries instead of one

— Don’t compute in the WHERE

 MySQL doesn’t know how to optimize constant
expressions

SELECT * FROM Headlines
WHERE Time > SUBDATE(NOW(), INTERVAL 7 DAY);

Copyright 2003, Jeremy Zawodny

Insert Speed
* In 4.1 and beyond, use prepared statements

e |nolder versons
— Single inserts are the slowest
— Multi-rows inserts are faster

— Bulk-loading (LOAD DATA or mysglimport)
arevery, very, very fast

e Using InnoDB, use transactions wisaly

— Many insarts in AUTOCOMMIT mode are
very, very slow

Copyright 2003, Jeremy Zawodny

Query Cache
Part of MySQL 4.0

Can seriously boost performance
Might save legacy apps you can’t change

Use query cache selectively if you have lots
of writes

—SELECT SQL_CACHE ...

Use mytop to watch query cache stats
— Version 1.3 and 1.4 will have more stats

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning
Watching performance
Benchmarking

Tunable Parameters
— Most bang, least effort
— Incremental gains

Methodol ogy

— Iterative testing
— Long-term monitoring

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning

Watching Performance

l=et

yahoo
fred Fred
fred ':. lul Fred
!-_1-3 hlj n] nLl=e F [|'|!:{ :5:l:|]_
, G I

Iy 1 [uery SELECT % FROM Headlines
RIS lee

E MuySOL_Admin
fred] Fr |-|:|

yahoo

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning

« Key Performance Numbers
— Queries per second
 Min, Max, Short-term, Long-Term
— Bytes per second
* |nbound vs. Outbound
—New connections per second
—Idlevs. Active clients
—Key cache efficiency
— Query cache efficiency

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning

e How MySQL uses memory

— Main Global Caches and Buffers
* Query cache
o Key buffer
e Table cache
 InnoDB buffer pool
* InnoDB log buffer

— Main Thread-specific Caches and Buffers
» Record buffer
o Sort buffer
 Join buffer

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning

e SHOW STAUTS
— Created _tmp _disk tables
o |If large, increase temp table size

— Handler_*
» Determine key buffer effectiveness
— Com _*
 Find the commands that are most often run
— Questions and Uptime
« Compute queries/second
— Select *
e How many types of each SELECT are executed
— Qcache *
e Query cache performance

Copyright 2003, Jeremy Zawodny

On-the-Fly Tuning
Use MySQL’s SET syntax to change
parameters on the fly (new in 4.0)

— max_connections

— walt_timeout

— thread cache

— key buffer size

— table cache

Don’t change too much at once
Persistent connections aren’t always fast!

Changes may take time to notice

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning

« SHOW STATUS

— Table locks *
 How many times are queries waiting for locks?
« Concurrency problems show up here
— Bytes *
« How much data are you pumping out
o Compare with inbound traffic
— Qcache *
* Query cache performance
 Memory usage

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning

e my.cnf file parameters
— key buffer
—tmp table size
— Table cache
— Max_connections
— Max_user_connections
— Long_query _time
— Thread_concurrency

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning

e my.cnf file parameters
— Innodb_buffer pool size
—Innodb log file size
— innodb file 10 threads
—Innodb flush log at_ trx_commit
—Innodb _log buffer size

— innodb_flush_method
o fdatasync
« O DSYNC

Copyright 2003, Jeremy Zawodny

INNnoDB Performance

 Transaction log flushing has three options

— (1) Flush on commit
— (0) Never flush
— (2) Flush once per second

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning

o Hleysystem |ssues

— Spread data among disks
 Put heavily used and lightly used databases together
 RAID-50r RAID-10 for data (w/batter-backed cache)
 RAID-1for logs
 New CREATE TABLE makesthis easier

— Logs separate from data
» Logsare mostly serialized writes
« Tables are updated and used in mostly random fashion

— If you have a lot of tablesin a database
o Useafilesystem designed to handle it
* ResiserFSisagood choice
— A journaling filesystem
o Makes crash recovery faster
o Better utilizesdisk I/O (usually)

Copyright 2003, Jeremy Zawodny

MySQL Server Tuning

* Upgrade oncein awhile
— New versions are often faster
— Better optimizations in query parser
— New and enhanced caching
o Convert older tables to newer format
— ISAM to MylSAM

— BDB to InnoDB (or not)
— ALTER TABLE my_ table TYPE=InnoDB

e Don't flush the transaction logs on commit

Copyright 2003, Jeremy Zawodny

Upgrade Testing
I’ s often a good i1dea to keep up-to-date

Performance tweaks and optimizations are
Introduced during the maintenance process

Be sure to test your critical queries carefully

Always use areal |oad test or read the
EXPLAIN output

Without load, “slow” queries are often fast

Copyright 2003, Jeremy Zawodny

Operating System Tuning
e Virtua Memory Use
— FreeBSD - excellent
— Linux - varieswildly

o 2.4.9 good

e >=2.4.16 good
 Others not good

e Per-process limits on:
— Memory
— File descriptors

e Network duplex settings
» Competing processes on the machine?

Copyright 2003, Jeremy Zawodny

Operating System Tuning
o Key Metrics

— Memory used/free/cache/buffer
e Swapping is very bad
* You might even disable swap

— Paging and page faults
o Make sure there’'s no memory pressure
« Server variables might be wrong if many page faults

— Disk 1/0

 Make surethe I/O iswhere you expect
e Disk I/O tuning (see your OS docs)

— Processes running, sleeping, blocked/waiting
— Actual CPU usage (might be too low)

Copyright 2003, Jeremy Zawodny

Operating System Tunlng
e Useful Unix Tools R\

— top, ps, vmstat

— lostat, sar

— mrtg, rrdtool
 Windows Tools = V9

— Performance Monitor (perfmeter)

— Task Manager

— Others | don’'t know (not a Windows guy)

Copyright 2003, Jeremy Zawodny

Hardware Tuning
 CPU Issues
_Speed
— Singlevs. Dual
e RAM Issues
e Disks
— IDE vs. SCSI

— RAID (hardware or software)
— Battery-backed cache on controller is best

Copyright 2003, Jeremy Zawodny

Hardware Tuning

e Network
— The faster the better (watch latency)
— Duplex settings

e |/O Channels

— The more the merrier
— Most PC motherboards suck

— Server-class boards are better
— High-end hardware (IBM, Sun) are best
— You'll belucky to have this problem!

Copyright 2003, Jeremy Zawodny

Network & Replication
PuUt clients near servers
Redundancy is very good

Put slaves near master(s)
— Unless that’ s stupid

Use | oad-balancing technol ogy

— High(er) availability MySQL

— Easy scaling of traffic

Pick the correct replication topol ogy
Backup daves instead of the master

Copyright 2003, Jeremy Zawodny

Network & Replication
Replication is quite flexible
Can build atopology to solve most
problems
Only afew nagging issues
— Auto-increment fields

— Automatic Fail-over
— Need to build health checks

 Performance/Latency
« Slave stopped?

Come to my replication talk to learn more!

Copyright 2003, Jeremy Zawodny

Stupid Query Tricks

e UseSQL CALC ROWS and

FOUND ROWS() rather than double-

gueries:

—SELECT ... LIMIT N, M

—SELECT COUNT(*)
 |nstead:

—SELECT ... LIMIT N, M

—SELECT FOUND_ROWS()

e Requiresfar less overhead on MySQL

Copyright 2003, Jeremy Zawodny

Stupid Query Tricks
e UseaUNION tore-writeasiow OR query

SELECT * FROM mytable
WHERE coll = ‘foo’ OR col2 = ‘bar’

(SELECT * FROM mytable
WHERE coll = ‘foo’)
UNION

(SELECT * FROM mytable
WHERE col2 = ‘bar’)

Copyright 2003, Jeremy Zawodny

Stupid Query Tricks

Ordering, limiting, and ordering again

(SELECT * FROM mytable
WHERE coll = ‘foo’
ORDER BY col2 LIMIT 50)
ORDER BY col3

Copyright 2003, Jeremy Zawodny

Final Advice
Read
Learn
Test
Ask
Monitor
Benchmark

Copyright 2003, Jeremy Zawodny

For More Info...

« MySQL mailing lists

— Vigt lists.mysgl.com
 Books

— MySQL Manua

— MySQL (Paul’ s Book)

— Managing & Using MySQL
* Web searching

Copyright 2003, Jeremy Zawodny

Questions and Answers

Copyright 2003, Jeremy Zawodny

