
In the open source world, truly great software starts in the
hands of enthusiasts and hobbyists. Given time, it matures
and develops a more robust community. Then, before most
of us realize what is happening, it gains critical mass and
moves into the broader industry. Companies that were using
expensive commercial software just a year ago are suddenly
using a free product — one of the rising stars from the world
of Open Source.

We’re all familiar with software products that have followed
that pattern recently: Linux, Sendmail, Perl, Apache, and so
on. Few people who have worked with MySQL will tell you
that it is any different. MySQL is becoming an increasingly
popular choice for building business-class database appli-
cations on Linux.

BY JEREMY ZAWODNY

s a result of MySQL’s growing role in larger organizations, its use is becoming more high-
profile. This means, of course, that MySQL needs to provide responsiveness, high

performance, and reliability. Already known in the industry for being a lightning-
fast database server, MySQL is often up to the task straight out of the box. How-
ever, there are quite a few things that can easily slow it down. Sometimes it’s
the result of poor application design. Sometimes MySQL’s default configuration

simply isn’t good enough for the task at hand. And sometimes all you need to do is throw a little
more hardware at the problem.

In the June issue (http://www.linux-mag.com/2001-06/mysql_01.html) we looked at the first case:
performance tuning from an application point of view. When trying to speed up a database applica-

SERVER

PERFORMANCE
TUNINGMaking sure your

MySQL server flies

38

tion, it’s always best to start with the application itself and
make sure that the tables are properly normalized, columns
are indexed, and queries are fast. But if you’ve done all that
and things are still slow, it’s time to look at the MySQL
server itself.

This time around, let’s begin by looking at how to tune a
MySQL server to increase performance under more demand-
ing workloads.

IT'S NOT ROCKET SCIENCE

While it may sound impressive, performance tuning is sim-
ply about squeezing as much performance as possible out
of your system. The way we’ll do this is by understanding
the variables that are involved and learning how they are
likely to affect performance.

Before diving into the details, it’s worth reiterating an im-
portant fact: the techniques we’ll look at will not “fix” poor-
ly written or un-optimized queries, poor database design,
or other application design problems. They may help alle-
viate the stress on a busy server, but you’re just postpon-
ing the inevitable. The only solution for a poorly written
application or poor database design is to go to the source
and fix it.

Really — fixing slow queries and/or a poorly designed
application will generally yield much better results than
spending time on server tuning.

If you’re not sure where to start, enable MySQL’s slow
query log as explained in the manual (http://www.mysql.
com/doc/S/l/Slow_query_log.html). Then just watch for
any query that you don’t normally expect to be “slow” and
figure out why that is. And, of course, make sure that any
queries that are “slow” are run infrequently. It will be time
well spent.

You may find that some fast queries appear in the slow
query log, too. This is because MySQL considers any query
“slow” if it does not use an index. This means it would call
the query:

SELECT * FROM us_states

“slow” even though there are probably only 50 rows in the
table. Indexing simply can’t help such a query, but MySQL
really doesn’t know that.

We’ll look at a few specific methods for speeding up My-
SQL. While this isn’t a comprehensive look (that would re-
quire an entire book!), we’ll examine some of the factors that
typically give you the most “bang for your buck” when per-
formance is suffering.

MEMORY USAGE

On the server side, the single most important factor in de-
termining how well MySQL will perform is memory. It’s
not enough to simply have a lot of memory available. You

need to tell MySQL precisely how you would like it to use
that memory. MySQL’s default settings are rather conserva-
tive for today’s hardware. In fact, if you have a dedicated
MySQL server with several hundred megabytes (or a few
gigabytes) of RAM, you’ll be able to give MySQL quite a
large portion of it to work with. By default, it will only use
a small fraction of what is available; this is because it has
no way of knowing if it is running on a dedicated server
where it will be used continuously or if it’s running on an al-
ready stressed laptop where it’ll only be used to hold an
address book.

Much of our discussion will focus on memory usage and
assume that you are using MySQL’s default table type —
MyISAM. If you are using one of the more advanced trans-
actional table types (InnoDB or Gemini), please see the

39

The more advanced table handlers (such as InnoDB
or Gemini) allocate their own global memory areas
that are completely separate from MySQL’s key buffer,
table cache, and similar variables. As a result, when
you use either of these table handlers, you must
decide just how much memory you’re willing to
commit to them.

These memory areas are called buffer pools
rather than simply “buffers” because they serve
as a combined cache for both index and record
data. Whenever you are using InnoDB tables, for
example, you should have a line like this in your
my.cnf file:

set-variable = innodb_buffer_pool_size=256M

This line simply tells the InnoDB table handler that
it may use up to 256 MB of memory for its index
and record cache.

Because the buffer pool will cache both record
and index data, it’s likely that you’ll need to choose
a buffer pool setting which is larger than the key
buffer that you might have used for MyISAM
tables. It is common to use as much as 70 percent
(or more) of the available memory for InnoDB’s
buffer pool.

If you find yourself making heavy use of two or
more table types, you should use extra caution
when allocating memory. Begin with conservative
numbers and gradually increase them after you are
familiar with MySQL’s performance under your
typical workloads. Few of MySQL’s buffers are
shared across table handlers.

MEMORY MANAGEMENT
FOR NON-MYISAM TABLES

Memory Management for Non-MyISAM Tables sidebar, pg.
39, for additional information.

FILE AND DISK LAYOUT

Because MyISAM tables store records and indexes in normal
files, the layout of the files can impact performance. If you
have multiple disks in your server, it’s a very good idea to
put the most active databases on different disks and even
different disk controllers.

If you happen to have software or hardware RAID on your
server, putting MySQL’s data directory on a RAID array can
improve performance as well. RAID 0, 1, or 5 can boost read
performance, while RAID 0 will also increase write perfor-
mance. Also, if you can use SCSI rather than IDE disks, you
will free up more of your server’s CPU to deal with actual-
ly running MySQL.

THE FILESYSTEM

Similarly, the filesystem itself can affect how MySQL per-
forms. With the number of alternative filesystems available
for Linux today, it’s hard to say which one(s) may work best
for you. Some users have reported noticeable increases in
MySQL performance after moving from the standard ext2
filesystem to either Reiserfs or SGI’s XFS, both of which are
journaling filesystems. See the “Journaling Filesystems” ar-
ticle (http://www.linux-mag.com/2000-08/journaling_01.
html) in our August, 2000 issue for more about the benefits
of moving to a newer filesystem.

If you have the luxury of time, consider testing with a
journaling filesystem (or two) using the latest 2.4.x Linux

kernels. Not only are you likely to find that performance im-
proves, you’ll never have to wait hours for fsck to finish on
your gigabytes of data after a crash.

If you do test on a 2.4.x Linux kernel, try to use a version
later than 2.4.9. Early 2.4 kernels contained a Virtual Memory
(VM) subsystem that could cause dramatic loss of perfor-
mance during heavy MySQL use in some circumstances.
The VM system has since been rewritten to alleviate most of
those problems.

HOW MYSQL USES MEMORY

MySQL uses memory for a variety of internal buffers and
caches that influence how often it must access files that re-
side on disk. The more often it has to wait for a disk to re-
spond, the slower it will be. As fast as modern disk drives
are, they’re still an order of magnitude (or more) slower than
RAM. And given the recent drops in memory prices, odds
are pretty good that you can easily afford to add memory
to a server if it will speed things up. Upgrading to faster disks
should be a last resort.

MySQL’s buffers and caches come in two flavors, global
and per-thread:

GLOBAL: As its name suggests, these memory areas
are allocated once and are shared among all of MySQL’s
threads. Two of the ones we’ll look at are the key buffer and
the table cache. Because these are shared buffers, the goal
is to make them as large as possible (without unnecessari-
ly taxing our resources).

PER-THREAD: These buffers allocate memory indivi-

DECEMBER 2001 WWW.LINUX-MAG.COM40

Like all good software, MySQL
comes with sample configuration
files to get you started. But MySQL
doesn’t require a my.cnf file to
operate; it will simply use the built-
in defaults if it cannot find one.
As a result, many people who use
MySQL never realize that there is
actually a configuration file.

When you need to perform
testing and tuning, it is easiest to
make changes to a configuration
file and restart the server. You can
make all of the changes in this
article simply by passing the right
command-line arguments to mysqld,
but that becomes more unwieldy
as the number of arguments grows.

Rather that construct a configu-
ration file from scratch, it’s best to
begin with one of the sample files
that come with MySQL. If you use
the binary version of MySQL or
build your own from source, you
will find the sample files in the
support-files sub-directory.

The sample files are: my-huge.
cnf, my-large.cnf, my-medium.
cnf, and my-small.cnf. If
MySQL was already installed on
your system, you may already
have a my.cnf file in etc.

Each of the four files is targeted
at a different “sized” MySQL
installation. By reading the
comments in each of those files,

you can get a good idea of which
one most closely matches your need.

Once you’ve decided which file
to use, simply copy it to either
/etc/my.cnf or my.cnf in the
data directory of your MySQL
installation. Putting the file in /etc
means that every MySQL client
and server (on that machine) will
read the settings.

Storing it in MySQL’s data
directory allows you to have several
instances of MySQL installed on
the same server. All you need to
do is give each installation its own
my.cnf file. In either case,
MySQL’s startup scripts will find
the file automatically.

USING A MY.CNF FILE

dually to queries as they need to perform particular opera-
tions, such as sorting or grouping. Incidentally, most of My-
SQL’s buffers are allocated on this per-thread basis. The per-
thread buffers we’ll be looking at are the record buffer and
the sort buffer.

Let’s first examine what function each of the buffers serves
and how to set and inspect their values. Then we’ll look at
how to examine MySQL’s performance counters and judge
whether or not changes you make are having any significant
impact.

KEY BUFFER

The key buffer is where MySQL caches index blocks for
MyISAM tables. Anytime a query uses an index, MySQL
will first check to see if the relevant index is in memory or
not. The key_buffer parameter in your my.cnf file con-
trols how large the buffer is allowed to get. Once the buffer
is full, MySQL will make room for new data by replacing
older data that hasn’t been used recently. (See the Using a
my.cnf File sidebar if you’re not familiar with MySQL’s con-
figuration file.)

The size of the key buffer appears as key_buffer_
size in the output of SHOW VARIABLES. With a 384 MB
key buffer, you’d see:

| key_buffer_size | 402649088

As a general recommendation, on a dedicated MySQL serv-
er, you should allocate somewhere between 20 percent and
50 percent of your RAM for MySQL’s key buffer. If you have
a gigabyte of memory, start with something like:

set-variable = key_buffer=128M

or even:

set-variable = key_buffer=256M

in your my.cnf file and see if you notice a difference. Odds
are that you will.

If you were only allowed to adjust one parameter on your
MySQL server, the key buffer would be the one to try. Indexes
are so important to the overall performance of any database
server that it’s hard to go wrong with making more room
in memory for them.

If you do not specify a size for the key buffer, MySQL will
use its default size, which is in the neighborhood of 8 MB.
Of course, it makes little sense to set the value for your key
buffer too high. Doing so could potentially starve the oper-
ating system of memory that it needs for disk buffering and
other tasks.

It might also be helpful to look at how much index data
you have on disk. Simply find the size of all the .MYI files
under MySQL’s data directory:

$ du -sh */*.MYI

Knowing how much index data you have, you can better
judge how much benefit you are likely to see from increas-
ing the size of the key buffer beyond a certain point. If some
of your index files belong to tables that are infrequently
used, there is little point in making room for them. But it’s
clear that any large or medium-sized database will nor-
mally benefit from a larger key buffer.

TABLE CACHE

MyISAM tables are composed of three separate files on disk:
the data file tablename.MYD, the index file tablename.
MYI, and, lastly, the table definition (or schema) file named
tablename.frm. In order to use a single table, MySQL
actually needs to open all three files. The .frm file will be
closed after it reads the schema, but the others will remain
open. MySQL will not close them until it needs to. This
avoids the overhead associated with opening and closing
the files if the table is used frequently.

The files usually are not closed until one of the following
events occurs:

1. The table has been explicitly closed via FLUSH TABLES.

2. The table has been dropped.

3. The server is being shut down.

4. The total number of open tables has reached the value
of the table_cache parameter.

The last event can be particularly important if you have
many tables that are often used across all your databases.
The default value of MySQL’s table cache is 64. So if you
have a few hundred (or thousand!) tables that are actively
used, MySQL is going to waste a lot of time and effort
needlessly opening and closing those files.

Increasing the size of the table cache will certainly help in
this situation. But you must be careful not to make the value
too large. All operating systems have a limit on the number
of open file descriptors a single process may have. Some
also have limits on the total number of open file descrip-
tors that a single user may have. If MySQL tries to open too
many files, the operating system will refuse to allow it and
MySQL will generate an error message in the error log. When
in doubt, check OS limitations.

In extreme cases, it is possible to increase the number of
available file descriptors via kernel configuration options.
Also, keep in mind that even though MySQL on Linux
appears as though it is many processes in the output of ps
and top, it is actually one multi-threaded daemon. The
open file descriptors are allocated by a single process and
shared among all of its threads.

WWW.LINUX-MAG.COM DECEMBER 2001 41

Unlike many of the other parameters, the table cache
applies to all of MySQL’s disk-based table types.

RECORD BUFFER

Whenever MySQL must sequentially scan a table (known
as a “full table scan”), the thread performing the scan will
allocate a record buffer for each table it must scan. This
typically happens when MySQL decides it is more efficient
to scan the table than to use an index for a query. It also hap-
pens when there simply is no index it could use.

A query such as:

SELECT *

FROM table_a

WHERE field4 = 'Linux'

will require a full table scan if field4 is not indexed.
By increasing the value of record_buffer in your my.

cnf file, you allow MySQL to read the table in larger chunks.
This will likely reduce the number of disk seeks involved
and make the scan significantly faster on a busy server.

However, you must be very careful with the size of the
record buffer if you have a lot of clients which run queries
that perform full table scans. Because the record buffer is
allocated on a per-thread basis, you may end up in a situ-

ation where individual clients cause record buffers to be allo-
cated at the same time. If the remaining memory is limited,
you’ll likely encounter swapping and dramatically reduced
performance.

In version 3.23.41, a related setting was introduced —
record_rnd_buffer. Like record_buffer, it is used
in scanning a larger number of rows. The record_rnd_
buffer is used for queries that result in an intermediate
file-sort being performed as well as in some non-sequential
record reads. Fortunately, if you don’t set the size of record_
rnd_buffer, it will default to the size of record_buffer.

SORT BUFFER

As its name implies, the sort buffer is used to answer queries
that invoke sorting data — those with an ORDER BY clause
in them. In addition, the sort buffer is used for queries that
involve grouping data (those with a GROUP BY clause).
Like the other buffers we’ve looked at, the sort buffer is rel-
atively small by default. By adjusting the sort_buffer
entry in your my.cnf file:

set-variable = sort_buffer=8M

you can often dramatically reduce the amount of time that
is used for sorting large result sets.

The sort buffer appears as sort_buffer in the
output of SHOW VARIABLES, such as:

| sort_buffer | 8388600

The same caveat applies to the sort buffer as the
record buffer. It’s a buffer that MySQL allocates fre-
quently and is allocated on a per-thread basis. So,
increase it with caution on a server that runs a lot
of concurrent queries.

GENERAL TUNING GUIDELINES

Before discussing how to measure or judge the ef-
fects of any changes you make, we need to briefly
consider a common sense approach to tuning. There
are a few things to keep in mind when you begin
making and testing changes:

1. Only change one parameter at a time.
Changes will not always result in the behavior
you might expect. If you change too many things
at once, you risk attributing a change in behav-
ior to the wrong parameter.

2. Don’t make changes in production. If at
all possible, have a test server available that is
similar in nature to your production database
server. Making changes in MySQL’s settings re-

How to Write Efficient MySQL Applications
http://www.linux-mag.com/2001-06/mysql_01.html

Journaling Filesystems
http://www.linux-mag.com/2000-08/journaling_01.html

MySQL Manual: Tuning Server Parameters
http://www.mysql.com/doc/S/e/Server_parameters.html

MySQL Manual: SHOW VARIABLES
http://www.mysql.com/doc/S/H/SHOW_VARIABLES.html

MySQL Manual: SHOW STATUS
http://www.mysql.com/doc/S/H/SHOW_STATUS.html

mytop — A top Clone for MySQL
http://public.yahoo.com/~jzawodn/mytop

Installing MySQL
http://www.linux-mag.com/2001-03/mysql_01.html

MySQL Mailing Lists
http://lists.mysql.com

RESOURCES

DECEMBER 2001 WWW.LINUX-MAG.COM42

quire that you stop and
start MySQL, which will
cause your users to ex-
perience service interrup-
tions. (In MySQL 4.x,
you’ll be able to change
settings on the fly.)

3. Use real data. The
type of data that you are
using affects how My-
SQL responds to queries. Ideally, you should use a copy
of your production databases. If it’s not possible to do
this, then you should try to construct a representative
subset of them.

4. Perform realistic tests. It is easy to assume that you
know what to test simply because you know where the
problem areas are. However, some configuration changes
may speed up slow parts of your application while si-
multaneously slowing down things that previously were
quite fast.

5. Be systematic and record your findings. It is
important to track the changes you make and how
they affected performance. After several hours (or even
days) of testing, you won’t likely be able to remember
exactly what was changed and whether the effects were
positive or negative. By putting your my.cnf file under
a version control system (RCS, CVS, SCCS), you can
keep an accurate record of all of your changes and
how well they worked.

If you are comfortable with MySQL’s replication features,
you can use the binary log to generate some of your test data.
Simply replaying a binary log using the mysqlbinlog com-
mand and piping it to the MySQL client:

mysqlbinlog binary-log.001 | mysql

will generate a lot of INSERT/UPDATE/DELETE queries on
your server. Since SELECT queries do not appear in the bina-
ry log, you’ll need to generate those by creating a test pro-
gram/script or by simply running your application against
the server. MySQL will run the queries from the binary log
one at a time, as fast as possible, so the timing will not
match the original conditions under which the queries will
run. But it is a useful technique nonetheless.

WATCHING DATABASE
PERFORMANCE NUMBERS

With a few starting points in mind and a concept of how
to test, we now need to consider how to monitor progress.
Fortunately, MySQL exposes more than 50 internal coun-

ters (or status variables), which track how many times var-
ious events occur: a table is opened, a key is used in a record
lookup, etc.

While there isn’t room in this article to discuss more than
a few of MySQL’s status variables, the MySQL manual con-
tains a section (http://www.mysql.com/doc/S/H/SHOW_
VARIABLES.html) that describes each one of them.

To see these numbers, you can use the SHOW STATUS

command. In this case, we’re going to focus on the variables
related to the key buffer:

mysql SHOW STATUS LIKE 'Key%';

+--------------------------+------------+

| Variable_name | Value |

+--------------------------+------------+

| Key_read_requests | 3844786889 |

| Key_reads | 16525182 |

| Key_write_requests | 303516563 |

| Key_writes | 152315649 |

+--------------------------+------------+

Those four variables tell you a lot about the performance
of MySQL’s key buffer. Anytime MySQL is able to read a key
(or index) from the key buffer (rather than going to disk),
it will increase the value of Key_read_requests). If My-
SQL must actually read the key from disk because it was
not already cached, it will increase Key_reads. The same
logic holds true for key writes.

Knowing this, we can calculate the efficiency (or hit rate)
for the key buffer. Using a formula like:

100 - ((Key_reads / Key_read_requests) * 100)

we can obtain a percentage that represents how often MySQL
is able to read keys directly from the cache rather than go-
ing to disk. The closer this value is to 100, the better. Using
the numbers above, we find a hit ratio of roughly 99.57 per-
cent. It’s generally a good idea to try and keep this value
over 90 percent.

However, running this calculation yourself can be quite
a tedious task. A much easier approach would be to utilize
a tool that can do all of the calculations for you. mytop

WWW.LINUX-MAG.COM DECEMBER 2001 43

FIGURE ONE: A partial snapshot of mytop in action, showing the performance statistics it reports.

See MySQL, page 62

(http://public.yahoo.com/~jzawodn/mytop/) is a Perl script
modeled after the Unix top command. It displays a list of the
top threads that MySQL is running;, It also shows a summa-
ry of various performance statistics at the top of the display.
As seen in Figure One, pg. 43, mytop displays the “Key Effi-
ciency” as well as the average number of queries per sec-
ond, slow queries, and more.

Fortunately, not all of MySQL’s tunable parameters require
a formula to measure. If you find that the value of opened_
tables in the SHOW STATUS output is either very large or
regularly increasing, it’s a sure sign that you need to increase
the table cache.

By either watching the output of SHOW STATUS or using
a tool like mytop, you should quickly be able to determine
whether or not the changes you made are having a measur-
able impact on MySQL.

WATCHING SYSTEM
PERFORMANCE NUMBERS

Monitoring performance changes in MySQL is only part of
the picture. You also need to watch what is happening from
the operating system point of view. Has your server begun
to swap? Is the CPU being much harder than it used to? Has
disk I/O increased or decreased?

All of those are valid questions that directly affect how

fast MySQL can operate. Like every application, it is at the
mercy of what Linux (or any operating system) will allow
it to do. So, it is important for you to keep a watch on over-
all system activity.

In order to do this, acquaint yourself with the tools that
seasoned system administrators use to understand what
their servers are doing. The most common tools for the job
are: top, vmstat, iostat, and sar.

Keep in mind that you should get a feel for your system’s
current activity and performance characteristics before you
begin testing. Without a baseline for comparison, you real-
ly won’t know how MySQL’s impact on the system may
have changed.

FINAL HINTS

Believe or not, we’ve merely scratched the surface of server-
side performance tuning for MySQL. The MySQL manual
contains many other ideas about how to increase MySQL’s
performance and monitor your progress.

If you’re struggling with performance tuning, or nearly
any other MySQL related issue, consider joining the MySQL
mailing list: http://lists.mysql.com/.

Jeremy Zawodny uses open source tools to process news and
data feeds for Yahoo! Finance and is writing a MySQL book
for O’Reilly. He can be reached at jeremy@zawodny.com.

DECEMBER 2001 WWW.LINUX-MAG.COM62

MySQL, from page 43

Advertisers’ Index

Linux Magazine (ISSN 1536-4674) is published monthly by InfoStrada LLC at 234 Escuela Avenue #64 Mountain View, CA 94040. The U.S. subscription
rate is $29.95 for 12 issues. In Canada and Mexico, a one-year subscription is $39.95 US. In all other countries, the annual rate is $49.95 US. Non-US sub-
scriptions must be pre-paid in US funds drawn on a US bank. Application to Mail at Periodicals Postage Rates is Pending at Mountain View, CA and additional
mailing offices.

Article submissions and letters should be e-mailed to editors@linux-mag.com. Linux Magazine reserves the right to edit all submissions and assumes no
responsibility for unsolicited material. Subscription requests should be e-mailed to linuxmag@neodata.com or visit our Web site at www.linux-mag. com.

Linux® is a registered trademark of Linus Torvalds. All rights reserved. Copyright 2001 InfoStrada LLC. Linux Magazine is printed in the USA.

ASL Workstations http://www.aslab.com 3

Borland .http://www.borland.com C2

Consensys http://www.raidzone.comC3

IDG .http://www.linuxworldexpo.com 60

Knox Software http://www.arkeia.com 5

Linux International http://www.li.org 37

Linux Professional Institute http://www.lpi.org 25

Microsoft http://www.microsoft.com/isp 18

MSC.Softwarehttp://www.msclinux.com11

Network Shell Inc. http://www.networkshell.com 55

PGI .http://www.pgroup.com47

Red Hat .http://www.redhat.com C4

Sharp Electronics Corporation http://www.sharp-usa.com 9

SuSE .http://www.suse.com 17

Trolltech Inc.http://www.trolltech.com 13

The Advertisers’ Index lists each company’s Web address and advertisement page. To advertise in Linux Magazine, please
contact adsales@linux-mag.com for a media kit containing an editorial schedule, rate card, and ad close dates.

